CHAPTER

6

CLASSICAL
THERMODYNAMICS —
GENERALIZATIONS
FOR ANY FLUID




Measurable Quantities:
LRV

Thermodynamic Balances:
S, H, U, G (Gibbs Free

Energy), A (Helmholz Free
Energy)

Example:
AH=C, AT

Cp = (SHIST),

Relate measurable quantities to

thermodynamic quantities for
balances through differential
calculus (materials constants

like Gy, Cv, tut, ap, kT and P, V,
1).



The Fundamental Property Relation for dU in Simple
Systems

Simple System:
-No Gradients
-Reversible

-No fields or walls

(I(b"’ EK t E,}}:{IQ + ([nfs t d;*”:'(_' 6.1
dU =dQ -~ PdV 6.2
Emphasizing the neglect of gradients, the reversible differential change between states is
dUrcv N ercv - (PdV)rcv 6.3
dQ
ds = —= =7 .dS = dQ (T,,-system temperature where Q transferred)
]‘th yys rey L ’ :
U(S
( ’V) dU = TdS - PdV 64 ©
H(S P) - dU for a clesad
) simple syslem.
We have defined enthalpy, /7 = U+ PV Therefore, dif = dU + PdV + VdP = TdS — PdV + PdV 0
- VdP dH for a re-
t , versible, closed sim-
ple system.
- s i . . SRV, Enthapy is conve-
dH = TdS+ VdP | which shows that /7 is a natural function of S and P 6.5 pro il

prassure are manip-
ulated.



Gibbs and Helmholtz Free Energies

dU = TdS - PdV

define Helmholtz energy A = U~ TS. Therefore, d4 = dU — TdS — SdT = TdS — PdV — TdS — SdT,

dA = —8dT— PdV which shows A is a natural function of 7and ¥ 6.6

other frequently used convenience property is Gibbs energy G=U~TS+ PV =4 + PV=H - TS.
Therefore, dG = dIfif — TdS — SdT = TdS + VdP — TdS ~ SdT.

dG = —SdT+ VdP | which shows (7 is a natural function of 7and P 6.7

The Gibbs energy is used specifically in phase equilibria problems where temperature and pressure
are controlled. We find that for systems constrained by constant T and 7 the equilibrium occurs
when the derivative of the Gibbs energy is zero (= driving forces sum to zero and Gibbs energy is
minimized). Note that dGz = () when T and P are constant (dT = 0, dP = 0). The Helmholtz and

Often, students” first intuition is to expect that energy is minimized at equilibrium. But some
deeper thought shows that equilibrium based purely on energy would eventually reach a state
where all atoms are at the minimum of their potential wells with respect to one another. All the
world would be a solid block. On the other hand, if entropy was always maximized, molecules
would spread apart and everything would be a gas. Interesting phenomena are only possible over a
narrow range of conditions (e.g., 298 K) where the spreading generated by entropic driving forces
balances the compaction generated by energetic driving forces. A greater appreciation for how this
balance occurs should be developed over the next several chapters.



Us,”)
H(S,P)
A(T,V)
G(T'p)

dU = TdS - PdV

’.m TdS + VdP

dA =~ - ST - PdV

dG SdT + vdr

U=H-PV=A+TS
A=G-PV=U-ST
H=U+PV=G+T§
G=H-1S=A+PV

~(OP/OS) p = (OT/OV)g
(CV/3S)p = (CT/OP)
(OP/OT) y= (0S/0V)

—(@V/T) p= (3S/0P),

Thermodynamic




Table 6.1 Fundamental and Auxiliary Property Relations

Natural Variables Legendre Transformation Translormed

Variable Sets

dU=TdS—PaV LS. V) S—
dH = TdS+ V dP HiS,P) H=U+PV {¥.P}

dAd =—-SdT—PdV  |A(T¥) A=U-T8 5.7
dG=-8SdT+ VdP |G(T.P) G=U-TS+PV (8.7, {KP}

We have energy dU = TdS-PdV, which is not useful since we can’t hold S

constant very easily so it would be more useful to have a different energy
expression that depends on V and T rather than V and S. To obtain this we find

the desired varible, T = (dU/dS)v. T is the conjugate variable of S in the dU

equation. The Legendre transform of the dU equation is dA =-SdT-PdV. This
1s arrived at from A=U — TS and dA =dU —TdS —SdT.

Start with 1s dA = -SdT-PdV, that depends on V and T. Use P as the conjugate

variable to V. Define G=A + PV, and dG =dA +VdP + PdV = -SdT+VdP and
G =PV -ST.



Legendre Transformations

How does a Legendre transform work?

The key idea is to use the product rule. If (x, y) is a conjugate pair of variables, then
d(xy) = xdy+ ydx relates the variation dy in quantity y to the variation dx in quantity x.

eg. 1) xp has the same units as L and H

eg.2) PVand TS have the same units as U, H, F,and G
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Mathematical details

Consider a function of two independent variables, call it f(x, y). Its differential is

() (o
o ‘(axld”[ayl”’y | ®

Defining u =(of /ax)y and w=(df/dy)_,Eq. (1) can be rewritten as

df =udx+wdy. (2)

We call # and x a conjugate pair of variables, and likewise w and y. We can recognize our
original variables x and y of the function f because the right-hand side of Eq. (2) is written in
terms of differentials of those two variables.

Proceeding, use the product rule (or equivalently, integration by parts) to compute the
differential

d(wy) = ydw+wdy (3)
and subtract this equation from Eq. (2) to get
dg=udx—ydw (4)

where I have introduced the Legendre-transformed function |g = f —wy/|. Since we are taking

differentials of x and w, we can take those two quantities as the independent variables of the new
function, g(x,w).

To summarize, we have done a Legendre transformation from an original function f(x, y) to
a new function g(x,w) by switching from variable y to its conjugate variable w. Of course, one
could instead switch x to « to obtain A(u, y) or one could switch both independent variables to
get k(u,w). We see therefore that for two variables, there are 4 possible variants on the function.
To make contact with thermodynamics, we might call these various functions the potentials. If
instead we have 3 independent variables, there are 8 different potentials, or in general there are
2" potentials for a function of » independent variables, since each variable can be represented by
either member of a conjugate pair.



Example 2: Legendre transform from internal energy U to enthalpy H

Suppose we have a system (such as a fixed quantity of gas) for which we have chosen the
independent variables to be the entropy S and volume V. Then according to the thermodynamic
identity,

dU=TdS-PdV (8)
where the temperature 7' and pressure P are therefore the variables conjugate to the entropy and

volume, respectively. We wish to transform from U(S, V) to a new thermodynamic potential
H(S, P). We again construct a table of equivalences:

S =U (the original function)
x =S (the variable we are not switching)

ox
y =V (the variable to be switched)

(af ) ( oS l =T (the conjugate of the unswitched variable)

af =—P (the conjugate of the switched variable)
ay . aV

where the partial derivatives of U were calculated from Eq. (8). The transformed function is
g=f-wy=U)-(P)V)=U+PV=H(S,P). 9
In accord with Eq. (4), its differential is
dH =TdS+VdP. (10)

Formulas for the Gibbs free energy G(7', P) and the Helmholtz free energy F(7,V) can be
similarly obtained.



Recall that the Gibbs phase rule specifies for a pure single-phase fluid that any state variable is
a function of any two other state variables. For convenience, we could write internal energy in
terms of {PT}, {F,T} or any other combination. In fact, we have already seen that the internal
energy is a natural function of {S§,¥7}:

dU=TdS-PdV

In real processes, this form is not the easiest to apply since {F,T} and {£, 7} are more often manipu-
lated than {S,V}. Therefore, what we seek is something of the form:

dU={(P. V. T, Cp, Cy) dV +g(P, ¥, T, CxCy) dT 6.8

subset we frequently choose to use as the controlled variables. Therefore, if we know the changes
of any two of these variables, we will be able to determine changes in any of the others, including
U, H, A, and G Let’s say we want to know how U changes with any two properties which we will
denote symbolically as x and y. We express this mathematically as:

dU = (8U/éx), dx + (2U/y), dy 6.9
where x and y are any two other variables from our set of properties. We also could write
dT = (6T/éx), dx + (8T/y), dy 6.10

where x and y are any properties except 7. The structure of the mathematics provides a method to



0 Isothermal
comprassibility.

0 Isobaric coeffi-
cient of tharmal

expansion.

A similar commonly used property is the Joule-Thomson coefficient defined by

: =:l(§l’) - l(i’e)
*r=v\ep/,  plep/ ;

=y -LD)
P=pmar/p pl\el/p

6.44

6.42

6.43



(f-x) = 6.11

gy| =0 and |5 = 6.12
X ¥

ox|
&> =1 6.13
y

ox ox\ [0z
(Fy) - (_ (;3-) 6.16 0(.‘-l'taln rule inter-
il HFCYE posing a variable.

&)= %) 5 +(5) 3,
cow/ , Ox ¥ ow ow 6.17 0Thaexpanslon

rule.




Triple Product Rule
Suppose F = F(x,y), then

dF = (8F/@x), dx + (@F/dy), dy 6.14

Consider what happens when dF = 0 (i.e., at constant F). Then,

6.15 @ 14006 product
rule.




U= U(S,V) = dU = (@U/BS)y dS + (@U/eV)g dV 6.18

Developing the ability to express any state variable in terms of any other two variables from the set

{P. T ¥, S} as we have just done is very important. But the equation looks a little formidable. How-
ever, the fundamental property relationship says:

dU= TdS - PdV 6.19
Comparison of the above equations shows that:
T=(cU/GS)y and -P=(0U/CV)s 6.20

This means that the derivatives in Eqn. 6.18 are really properties that are familiar to us. Likewise,
we can learn something about formidable-looking derivatives from enthalpy:

H=H(S,P)= dH = (H/3S)pdS + (6H/CP)g dP 6.21
But the result of the fundamental property relationship is:
dH =TdS + VdP
Comparison shows that:

T=(2H/3S), and V=(3H/@P)g



ir = (&) s (@
Ew ydx oy dy

x
For an exact differential, differentiating with respect to x we can define some function M:
M = (0F/0x) ,, = M(x.y) 6.22
Similarly differentiating with respect to y:
N = (8F/éy),= N(x.y) 6.23

Taking the second derivative and recalling from multivariable calculus that the order of differentia-
tion should not matter,

32 F(x,y) _ @ ((E’F X, ) ) _ @ ((ang, 2)) ) _ &F(x.p) 6.24
axady ox dy Iy oy ax dyox '

5} é.
(— = (‘:l!) 6.25 0Euler"ss

ax ¥ Y/ x reciprocity relation.

This simple observation is sometimes called Euler’s reciprocity relation.’ To apply the reciprocity
relation, recall the total differential of enthalpy considering /7 = H(S,P):

dH = (8H/3S) pdS + (@H/@P)g dP = TdS + VdP 6.26

Considering second derivatives:
OLH _ 6’2H:[6((_31_‘1J z[ﬁ(é. ] 6.27
aséP  @pas  LeS\ap s] p LéP\3S/pls '

é’l’) _ {er
:(asp (aps 6.28




Maxwell’s Relations
dU=TdS — PdV =
dH =TdS + VdP =
dA =—-8dT - PdV =

dG =-8dT + VdP =

—(BP/2S) = (8T/aV)g
(@V/0S)p = (8T/aP)g
(@P/3T) = (0S/8V)

—(@V/8T)p= (6S/0P) 1

6.29

6.30

6.31

6.32



~(0P/0S) y = (OT/0V);
(OP/2T) y= (OS/oV) ’

—(QV/3T) p= (8S/0P),

TheI’mO dynaml C
Square




Example 6.1 Pressure dependence of H

Derive the relation for (g’—;) and evaluate the derivative for: a) water at 20°C where
T

(Q- = 2.07x10"* em*/g-K and (?—- = —4.9x10"° cm¥g-bar, p = 0.998 gfem’; b) an
T/ p P’ 7
ideal gas.

Solution: First, consider the general relation dH = TdS + VdP . Applying the expansion rule,

by a Maxwell relation, the entropy derivative may be replaced

(g-;!JT = _7@7”);1’ 6.33

which is valid for any fluid.

(a) Plugging in values for liquid water,

() = -293.15(2.07 x 10-4em?/g-K) + 1.002
aP. T

=-0.061 + 1.002

-

Therefore, within 6% at room temperature, (gl_-l) =~ V for liquid water as used in Eqn. 2.42 on
P/ p
page 59 and Example 2.6 on page 60.

(b) For an ideal gas, we need to evaluate (V/6T),. Applying the relation to V = RT/P
(éV/éT)p = R/P. Inserting into Eqn. 6.33, enthalpy is independent of pressure for an ideal
gas.

iJH) ZR .
(ap T P (ig)

A non-ideal gas will have a different partial derivative, and the enthalpy will depend on pressure
as we will show in Chapter 8.




Example 6.2 Entropy change with respect to T at constant P

Evaluate (GS/@7)p in terms of Cp, Cy; T, P, ¥, and their derivatives.

Solution: Cp is the temperature derivative of H at constant P. Let us start with the fundamental
relation for enthalpy and then apply the expansion rule. Recall, dH = TdS + VdP.
Applying the expansion rule, Eqn. 6.17, we find,

(an 7(87" p \oTp .35

Applying the basic identity of Eqn. 6.12 to the second term on the right-hand side, since P
appears in the derivative and as a constraint the term is zero,

0, =5,

But the definition of the left-hand side is given by Eqn. 2.36: Cp=(8H/8T)p.

Therefore, (8S/6T)p = Cp/T, which we have seen before as Eqn. 4.31, and we have found
that the constant-pressure heat capacity is related to the constant-pressure derivative of entropy
with respect to temperature. An analogous analysis of U/ at constant ¥ results in a relation
between the constant-volume heat capacity and the derivative of entropy with respect to temper-
ature at constant V. That is, Eqn. 4.30,

(85/8T), = Cy/T




From the definitions of C; and Cv and the chain rule:

dS(T. V)= Cy /T dT+ (8P/oT)y dV 6.38
dS (V. P) = Cp(@T/6V)p/T dV + CAST/EP)y/T dP 6.39
dH (T, P)= Cp dT+ [V - T(&V/T)p ] dP 6.40 O 4 cummary
of useful relations.
dU (T, V)= Cy dT+ [T(6P/8T)y—P] dV 6.41

One may wonder, “What is so important about the variables Cp, Cy; P, ¥, T, and their derivatives?”

The answer is that these properties are experimentally measureable. Engineers have developed 0An equation of
equations of state written in terms of these fundamental properties. Briefly, an equation of state State links the
provides the link between P, ¥, and 7. So, we can solve for all the derivatives by knowing an equa- OP’, Z’ﬁzg_opems

tion for P = P(¥,T) and add up all the changes. Properties like /7, U, and § are not considered mea-
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A similar commonly used property is the Joule-Thomson coefficient defined by
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-1{é A
0 Isothermal K= _f/l(g_ _ _l_(gg)

compressibility. cP/p  p\oP/p
1/¢ -1(¢,
0 Isobaric coeffi- Ap= T’(T’- = :)B
cient of thermal clV'p p\élp
expansion.

A similar commonly used property is the Joule-Thomson coefficient defined by

8
wr=(35),

oS oH oS oU
=T =1 =| == C =T = 1| =| =
o.-1(5) -5, =13 -(5)

(T)F(*')(—Q = - dS(T. V)= Cy /T dT+ (8P/oT)y dV
S U v dS (V, P) = Cp(@T/6WV)p/T dV + CA8T/éP)y/T dP
H A dH (T, P)= Cp dT+ [V — T(8V/8T)p | dP

-P G T dU (T, V)= Cy dT+ [T(8P/@T)y—P) dV



Example 6.3 Entropy as a function of T and P

Derive a general relation for entropy changes of any fluid with respect to temperature and pres-
sure in terms of Cp, Cy; P. ¥, T, and their derivatives.

Solution: First, since we choose 7, P to be the controlled variables, applying Eqn. 6.14
dS = (85/¢T)p dT + (8S/EP)y dP 6.36

but (65/6T)p = Cp /T as derived above, and Maxwell’s relations show that
(65/6P)p=—aVieT)p
= dS(T, P)=Cp /T dT - (&V/eT)p dP 6.37

This useful expression is ready for application, given an equation of state which describes

V(T.P).




Example 6.4 Entropy change for an ideal gas

A gas is being compressed from ambient conditions to a high pressure. Devise a model equation
for computing AS(7 P). Assume the ideal gas equation of state.

Solution: We begin with the temperature effect at (constant) low pressure. By Eqn. 6.37,

dS)p"® = Cjf dT/T (ig)

Having accounted for the temperature effect at constant pressure, the next step is to account for
the pressure effect at constant temperature. The derivative (GF/6T)p is required.

V=RT/P = (8V/ieT)p=R/P (ig)
Putting it all together,
ig
as = —=ar- gdP = C%¥dInT- RInP (ig)

Assuming C ;,g is independent of 7 and integrating,

AS= Cf In (T5/Ty) — Rln (P5/Py) (ig)




Example 6.5 Entropy change for a simple nonideal gas

A gas is compressed from ambient conditions to a high pressure. Devise a model equation for
computing AS(7, P) with the equation of state: ¥"'= RT/P + (a + bT), where a and b are constants.

Solution: Substituting the new equation of state and following the previous example,

(6V/oT)p=R/P + b

We can still apply C/# because we could be careful to calculate temperature effects at low P
before calculating the pressure effect. Inserting into Eqn. 6.37,

cis )
ds = —Edr-%dp-bdP = CEdnT-RInP-bdP

Assuming C;';S is independent of T and integrating,

AS = Cj#In(T,/T,) - Rln (P,/P,) — bAP (*)




Example 6.6 Accounting for T and V impacts on energy

Derive an expression for (%ll-f/) in terms of measurable properties. (a) Evaluate for the ideal gas.
V4T

(b) Evaluate for the van der Waals equation of state, P = RTAV - b) —

Solution: Beginning with the fundamental relation for dU,

dU=TdS - PdV
Applying the expansion rule

&), = 1&,&), o

Using a Maxwell relation and a basic identity

5U) - ‘l’.’)_
), 7(67,,P 6.46

(a) For an ideal gas, P =RT/V

(gi;)V=§; (PU) —--—P—O (ig)

Thus, internal energy of an ideal gas does not depend on volume (or pressure) at a given 7.

(b) For the van der Waals equation,

@t @S- w
ar) ) Vb Vp V-b \V-b 2 8




Example 6.7 The relation between Helmholtz energy and internal energy

Express the following in terms of U, H, S, GG and their derivatives: ({A/RT)/CT)

Solution: Applying the product rule,

(D), - w7

Applying Egn. 6.6 and the definition of 4,

(6(A/RT) _ =S (U=-TS) _ -
¢r /y RT  RT? RT2

Rearranging, and introducing a common definition f=1/kT,

& - (mgem) - (eagan)

The significance of Eqn. 6.47 is that one can easily transform from Helmholtz energy to internal
energy and vice versa by integrating or differentiating. This is especially easy when the temper-
ature dependence is expressed as a polynomial.




Hints on Manipulating Partial Derivatives
A A
1. Learn to recognize (f;é) and (-(ig} as being related to Cp and Cy; respectively.
c¢T P aT )

2. If a derivative involves entropy, enthalpy, or HHelmholtz or Gibbs energy being held constant,

e.g., (%I—’ , bring it inside the parenthesis using the triple product relation (Eqn. 6.15). Then
AT H

apply the expansion rule (Eqn. 6.17) to eliminate immeasurable quantities. The expansion

rule is very useful when F of that equation is a fundamental property.

3. When a derivative involves {7, S, P, ¥} only, look to apply a Maxwell relation.

4. When nothing else seems to work, apply the Jacobian method.? The Jacobian method will
always result in derivatives with the desired independent variables.



Example 6.9 Volumetric dependence of Cy, for ideal gas

Determine how Cj-depends on volume (or pressure) by deriving an expression for (¢C/ V) T
Evaluate the expression for an ideal gas.

Solution: Following hint #1 and applying Eqn. 4.30:

_ @8
CV_iag

By the chain rule:

(05, - (2 213
oVv/ir o y\aV/ r oV \eT yir

Changing the order of differentiation:

(PCV _ B 6213
T 37{ ]V T~ v

For an ideal gas, P = RT/V, we have (ﬁ
T/ y

18,46, -
PT[ o)), " anv), =0 (ig) 6.51

Thus, heat capacity of an ideal gas does not depend on volume (or pressure) at a fixed tempera-
ture. (We will reevaluate this derivative in Chapter 7 for a real fluid.)

in Example 6.6:




Example 6.10 Application of the triple product relation

Evaluate (65/0V) 4 in terms of Cp, Cy, T, P and V. Your answer may include absolute values of §
if it is not a derivative constraint or within a derivative term.

Solution: This problem illustrates a typical situation where the triple product rule is helpful
because the Helmholtz energy is held constant (hint #2). It is easiest to express changes in the
Helmholtz energies as changes in other variables. Applying the triple product rule:

(6S/0V) , = —(8A/3V) ¢ /(8A/BS)y

Applying the expansion rule twice, d4 =—PdV — SdT = (¢4/0V)g= —P-S(¢T/¢V)g and (3A/CS)y
=0 — S(¢T/GS)y. Recalling Eqn. 4.30 and converting to measurable derivatives:

= (&) = & maerons=(59) (57, = -5 (&),

Substituting:

-@,- 3.




Example 6.11 Master equation for an ideal gas

Derive a master equation for calculating changes in U for an ideal gas in terms of { V] T}.

Solution:
dU = (?-‘-/) v+ (?-‘—’) dT
cV/ r T/ y

Applying results of the previous examples:

dU = CdT + [(gg)V-P]dV 6.52

Notice that this expression is more complicated than the fundamental property relation in terms
of {S, V}. As we noted earlier, this is why {S, ¥} are the natural variables for dU, rather than
1TV} or any other combination. For an ideal gas, we can use the results of Example 6.6 to find:

dUE = c’*dr (ig) 6.53




Example 6.12 Relating Cp to Cy

Derive a general formula to relate Cp and Cj.

Solution: Start with an expression that already contains one of the desired derivatives (e.g., Cp)
and introduce the variables necessary to create the second derivative (e.g., Cp). Beginning with
Eqgn. 6.38,

Cy 3]
IS = —dT+| —| d
as = —+ar ( FI;J v

and using the expansion rule with 7 at constant 7,
1

as) Cyra (PP) (a . Cp

—| = —= =] | == h left- —
(67‘ , T\or , Gt \ar P,w ere the left-hand side is T

¢ ¢
C = +T(..l_’) (_
p= Gt Gr T/ p

Exercise:

Verify that the last term simplifies to R for an ideal gas.




USEFUL DERIVATIVES

Other useful derivative relations shown in Chapter 6
dS (T, P)=Cp/T dT - (cV/0T)p dP
dS(T, VY=Cy/T dT + (0P/oT)y dV
dS (V. P)=Cp(éT/éV)p/T dV + CAOT/OP)y/T dP
dH (T, P) = Cp dT + [V - T{eV/0T)p) dP
dU (T, V)=Cy dT + [T(éP/éT), -Pl dV

Differential Property Corresponding Maxwell Relation
dU TdS - PdV  U(S, V) ~(OP/8S)y = (OT/0V)g
dH = TdS + VdP H(S, P) (6V/eS)p = (6T/EP)g
dA = -SdT - PdV A(T V) (OP/eT)y = (8S/EV)y
dG = =SdT + VdP G(T, P) —(aV/eT)p = (8S/2P)y

6.37
6.38
6.39
6.40
6.41

Hints for Remembering the Auxiliary Relations

Auxiliary relations can be easily written by memorizing the fundamental relation for 4U and the nat-
ural variables for the other properties. Note that {7.S} and {F, F} always appear in pairs, and each pair
is a set of conjugate variables. A Legendre transformation performed on internal energy among con-
Jugate variables changes the dependent variable and the sign of the term involving the conjugate vari-
ables. For example, to transform P and F, the product PV is added to U, resulting in Eqn. 6.5. To
transform 7 and S, the product 7 is subtracted: 4 = U~ TS, d4 = dU — TdS — SdT = —-SdT — PdV. The
pattern can be easily seen in the “Useful Derivatives™ table on the front book end paper. Note that
1T.S} always appear together, and {P,V} always appear together, and the sign changes upon transfor-

mation.




Jacobian Method of Derivative Manipulation

1 A
change at fixed enthalpy, (21) , which is written in Jacobian notation as ((:Z) = AT.H) . Note
oP g oP g a(P,H)

how the constraint of constant enthalpy is incorporated into the notation. The rules for manipulation
of the Jacobian notation are,

1. Jacobian notation represents a determinant of partial derivatives,
AK.L) (¢ cL [ ey _ | \eX/y\c¥/y
= =\ 7 |7 =) 535 = 6.54
X, Y) X/ y\¢¥ x oY/ y\aX y (6‘L (é’L)
FJJY &Y/ x

The Jacobian is particularly simple when the numerator and denominator have a common

variable,
AR.L) _ (%K) 6.55
AX,L) \aXp '

which is a special case of Eqn. 6.54.

2. When the order of variables in the numerator or denominator is switched, the sign of the
Jacobian changes. Switching the order of variables in both the numerator and denominator
results in no sign change due to cancellation. Consider switching the order of variables in
the numerator,

AK.L) _ LK)

- 6.56
axY) XY
3. The Jacobian may be inverted.
AK.L) _ [P(X Y)]" N 6.57
AX,Y) LaKL) AX. Y) ‘
d(K, L)

4. Additional variables may be interposed. When additional variables are interposed, it is usu-
ally convenient to invert one of the Jacobians.

AK.L) _ AKL)AB,C) _ XB.C)
AX.Y)  ABOAXY)  aX

6.58



Manipulation of Derivatives

Before manipulating derivatives, the desired independent variables are selected. The selected inde-
pendent variables will be held constant outside the derivatives in the final formula. The general pro-
cedure is to interpose the desired independent variables, rearrange as much as possible to obtain
Jacobians with common variables in the numerator and denominator, write the determinant for any
Jacobians without common variables; then use Maxwell relations, the expansion rule, and so on, to
simplify the answer.

1. If the starting derivative already contains both the desired independent variables, the result
of Jacobian manipulation is redundant with the triple product rule. The steps are: 1) write
the Jacobian; 2) interpose the independent variables; 3) rearrange to convert to partial
derivatives.

5
Example: Convert (%} to derivatives that use T and P as independent variables.
AT H

(52_ _ATH) _ AT.H)AT.P) _ %%% '(H) (HJ

P/ &P,H) &T,PYAP,HY _a(HP) (p Cp
AT, P) T/ p

and the numerator can be simplified using the expansion rule as presented in Example 6.1.

2. If the starting derivative has just one of the desired independent variables, the steps are: 1)
write the Jacobian; 2) interpose the desired variables; 3) write the determinant for the Jaco-
bian without a common variable; 4) rearrange to convert to partial derivatives.

Example: Find a relation for the adiabatic compressibility, k¢ = —%,(‘:—V) in terms of
o . . . . » aP. S
derivatives using 7, P as independent variables. :

5, - 8- B2 ()5, 3,5)9
cP. ('*(P S) ('(P, a(p,S) oP/ p\éT/ p \&T/ p\eP. as’p
Now, including a Maxwell relation as we simplify the second term in square brackets, and
then combining terms:
2
(@) - (@) + 1
P/ g oP/y Cp\éT/p
_ 1 ("I T(o o T (r?V)z
= = + = I
Ks V( Py Co\a 9,) 1T e \aT p
3. If the starting derivative has neither of the desired independent variables, the steps are:

1) write the Jacobian; 2) interpose the desired variables; 3) write the Jacobians as a quotient
and write the determinants for both Jacobians; 4) rearrange to convert to partial derivatives.

A
Example: Find ((i,—;fj in measurable properties using P and T as independent variables.
‘) U

as. o
AS.U) _ AS.DAP.T) _ AP.T)
av,0)  AP,DAV.U) a0
&P, T)




3. If the starting derivative has neither of the desired independent variables, the steps are:
1) write the Jacobian; 2) interpose the desired variables; 3) write the Jacobians as a quotient
and write the determinants for both Jacobians; 4) rearrange to convert to partial derivatives.

a
Example: Find (;,—:,] in measurable properties using P and T as independent variables.
) U

a8, U)
8. U) _ &S )ar. ) _ &P.T)
AV, U) 4P, T(V,U) &y, U

AP, T)

Writing the determinants for both Jacobians:
3.59,-65),59,
5,3,- 3,5,

Now, using the expansion rule for the derivatives of U, and also introducing Maxwell rela-

-G LG, |75, G )
G Ler-r3, ]+ 15, 3 5,

P(g—';)i " c,_,’;,(g’-;) i
a5,

The result is particularly simple. We could have derived this directly if we had recognized
that S and V' are the natural variables for U. Therefore, dU = TdS — P dV = 0,

=P
T

= —PdV

U’ T(g—?,) . = P, (g—}sf) . — 1—; . However, the exercise demonstrates the

procedure and power of the Jacobian technique even though the result will usually not sim-
plify to the extent of this example.



